metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4-carboxypyridinium) aquapentakis-(isothiocyanato- κN)iron(III) bis(pyridinium-4-carboxylate)

Xiu-Ling Li,* Zai-Sheng Lu and De-Zhong Niu

School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu Province 221116, People's Republic of China Correspondence e-mail: lxl@fjirsm.ac.cn

Received 11 September 2007; accepted 27 September 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.132; data-to-parameter ratio = 12.8.

In the crystal structure of the title compound, $(C_6H_6NO_2)_2$ -[Fe(NCS)₅(H₂O)]·2C₆H₅NO₂, the iron complex lies on a mirror plane; the six-coordinate Fe^{III} ion, the coordinated water molecule and three of the five isothiocyanate ligands are located on this plane. The crystal structure is triple-layered. The pyridinium-4-carboxylate (ina) molecules and the protonated 4-carboxypyridinium (inaH⁺) cations interact with each other through N-H···O and O-H···O hydrogen bonds, leading to the formation of a layer perpendicular to the *b* axis. Pairs of these layers sandwich another layer of {[Fe(NCS)₅-(H₂O)]²⁻]_n anions with which they interact *via* electrostatic attraction and O-H···O hydrogen bonds, resulting in sheets of triple layers also perpendicular to the *b* axis.

Related literature

For related compounds, see Li, Tong et al. (2004); Li, Zhao et al. (2004); Li et al. (2007).

Experimental

Crystal data $(C_6H_6NO_2)_2[Fe(NCS)_5(H_2O)]$ -- $2C_6H_5NO_2$

 $M_r = 858.72$ Orthorhombic, *Pnma* a = 14.8713 (3) Å b = 21.0882 (3) Å c = 11.9741 (2) Å V = 3755.18 (11) Å³ Z = 4

Data collection

18247 measured reflections
3405 independent reflections
2589 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.043$

Mo $K\alpha$ radiation

 $0.36 \times 0.30 \times 0.20$ mm

 $\mu = 0.74 \text{ mm}^{-1}$

T = 297 (2) K

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.049 & \text{H atoms treated by a mixture of independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 3405 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.71 \text{ e } \text{ Å}^{-3} \\ 265 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.62 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA···O11	0.76 (4)	1.95 (4)	2.711 (3)	178 (5)
$N11 - H11A \cdot \cdot \cdot O11^{i}$	0.86 (4)	1.86 (4)	2.710 (3)	168 (4)
$O21 - H21 \cdots O12^{i}$	0.82	1.72	2.532 (3)	173
$N21 - H21A \cdots O22^{ii}$	0.84 (4)	2.14 (5)	2.825 (4)	138 (4)

Symmetry codes: (i) $x + \frac{1}{2}$, $y, -z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $y, -z + \frac{3}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART* and *SAINT* (Siemens, 1996); data reduction: *SAINT* and *XPREP* (Siemens, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Xuzhou Normal University (grant No. 05XLB09).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2066).

References

- Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.
- Li, X. L., Tong, M. L., Niu, D. Z. & Chen, J. T. (2004). *Chin. J. Chem.* **22**, 64–68. Li, X. L., Zhao, C. C., Chen, J. T. & Du, W. X. (2004). *Chin. J. Chem.* **22**, 533– 536.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). XPREP. Version 5.04. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2640 [doi:10.1107/S1600536807047460]

Bis(4-carboxypyridinium) aquapentakis(isothiocyanato-*KN*)iron(III) bis(pyridinium-4carboxylate)

X.-L. Li, Z.-S. Lu and D.-Z. Niu

Comment

Isothiocyanate anions exhibit a large variety of different coordination modes towards metal cations and, partially due to this, they are widely used as versatile ligands in many areas of coordination chemistry (Li, Tong *et al.*, 2004; Li, Zhao *et al.*, 2004 and Li *et al.*, 2007). Herein we describe the crystal structure of the iron(III) isothiocyanate complex $[inaH]_2[Fe(H_2O)(NCS)_5].2[ina]$ (ina = isonicotinic acid).

A thermal ellipsoid drawing of the complex with the atomic numbering scheme is shown in Fig. 1. The iron complex lies on a mirror plane with the six-coordinated Fe^{III} ion, a coordinated water molecule and three of the five isothiocyanate ligands located directly within this plane (atoms Fe1, O1W, N1, C1, S1, N2, C2, S2, N4, C4 and S4). The coordination geometry around the Fe^{III} ion is slightly distorted octahedral. All the isothiocyanate anions coordinate to the iron(III) center through the nitrogen atoms in a slightly bent mode with C—N—Fe angles in the range of 150.7 (5)–166.8 (5)°. The ina molecules and the protonated inaH⁺ cations interact with each other through N—H…O and O—H…O hydrogen bonds which leads to the formation of a 2-D layer perpendicular to the *b* axis. One of this sublayers is shown in Fig. 2. Each two of these layers sandwich another layer of { $[Fe(H_2O)(NCS)_5]^{2-}$ _n anions with which they interact *via* electrostatic attraction and O—H…O hydrogen bonds, resulting in sheets of triple-layers perpendicular to the *b* axis. One of these triple-layers is shown in Fig. 3.

Experimental

AgNO₃ (0.51 g, 3.0 mmol), NH₄SCN (0.68 g, 4.5 mmol) and ina (1.11 g, 4.5 mmol) were added to a stirred solution of FeCl₃·6H₂O (0.41 g, 1.5 mmol) in water. The mixture was stirred at room temperature for 12 h. The solution was filtered and the filtrate was left to evaporate slowly in air. After a few days, purple-red crystals suitable for X-ray diffraction analysis were obtained.

Refinement

Water and N—H hydrogen atoms were located from the difference density Fourier maps and were refined with $U_{iso}(H) = 1.5U_{eq}(O)$ and $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atoms were placed geometrically with C–H and O—H distances of 0.96 and 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. Hydroxyl H atoms were allowed to rotate to best fit the experimental electron density.

Figures

Fig. 1. A view of the complex with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (v) x, 3/2 - y, z.

Fig. 2. The sublayer consisting of ina molecules and inaH⁺ cations. View along the *b* axis. Dashed lines represent N11—H11A··· O11ⁱ, N21—H21A···O22ⁱⁱ and O21—H21···O12ⁱ hydrogen bonds. Symmetry codes: (i) x + 1/2, y, -z + 1/2; (ii) x - 1/2, y, -z + 3/2.

Fig. 3. The triple-layer seen along the c axis. Dashed lines represent hydrogen bonding interactions.

Bis(4-carboxypyridinium) aquapentakis(isothiocyanato-к/N)iron(III) bis(pyridinium-4-carboxylate)

 $l = -12 \rightarrow 14$

Crystal data	
(C ₆ H ₆ NO ₂) ₂ [Fe(NCS) ₅ (H ₂ O ₁)]·2C ₆ H ₅ NO ₂	$F_{000} = 1756$
$M_r = 858.72$	$D_{\rm x} = 1.519 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pnma	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 6815 reflections
<i>a</i> = 14.8713 (3) Å	$\theta = 1.9 - 25.1^{\circ}$
b = 21.0882 (3) Å	$\mu = 0.74 \text{ mm}^{-1}$
c = 11.9741 (2) Å	T = 297 (2) K
$V = 3755.18 (11) \text{ Å}^3$	Prism, purple red
Z = 4	$0.36 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Siemens SMART CCD diffractometer	3405 independent reflections
Radiation source: fine-focus sealed tube	2589 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 297(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 17$
$T_{\min} = 0.776, T_{\max} = 0.866$	$k = -19 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 5.0802P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3405 reflections	$\Delta \rho_{max} = 0.71 \text{ e } \text{\AA}^{-3}$
265 parameters	$\Delta \rho_{\rm min} = -0.62 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returning a construction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.04898 (5)	0.7500	0.46892 (6)	0.0447 (2)
S1	0.35902 (12)	0.7500	0.57736 (16)	0.0711 (5)
S2	-0.26880 (10)	0.7500	0.44506 (14)	0.0618 (4)
S3	0.11872 (8)	0.53111 (5)	0.42450 (10)	0.0666 (3)
S4	0.08889 (14)	0.7500	0.84926 (17)	0.0966 (7)
N1	0.1841 (3)	0.7500	0.4965 (4)	0.0642 (13)
N2	-0.0851 (3)	0.7500	0.4331 (5)	0.0666 (14)
N3	0.0549 (2)	0.65311 (16)	0.4608 (3)	0.0571 (9)
N4	0.0261 (4)	0.7500	0.6327 (4)	0.0671 (14)
C1	0.2566 (4)	0.7500	0.5337 (4)	0.0492 (13)
C2	-0.1609 (4)	0.7500	0.4375 (4)	0.0481 (13)
C3	0.0825 (3)	0.6021 (2)	0.4464 (3)	0.0476 (9)
C4	0.0520 (4)	0.7500	0.7235 (5)	0.0577 (15)
O1W	0.0739 (3)	0.7500	0.2978 (3)	0.0556 (11)
H1WA	0.079 (3)	0.718 (2)	0.268 (4)	0.083*
011	0.08724 (13)	0.63784 (11)	0.1885 (2)	0.0400 (6)
O12	0.13720 (17)	0.57069 (15)	0.0600 (2)	0.0676 (9)

N11	0.41185 (19)	0.61060 (15)	0.2733 (3)	0.0465 (8)
H11A	0.468 (3)	0.6149 (18)	0.292 (3)	0.056*
C11	0.1473 (2)	0.60535 (16)	0.1433 (3)	0.0390 (8)
C12	0.24110 (19)	0.60742 (15)	0.1927 (3)	0.0348 (7)
C13	0.3076 (2)	0.56935 (17)	0.1478 (3)	0.0439 (9)
H13A	0.2943	0.5423	0.0888	0.053*
C14	0.3928 (2)	0.57152 (18)	0.1900 (3)	0.0500 (10)
H14A	0.4374	0.5456	0.1603	0.060*
C15	0.3498 (2)	0.64714 (18)	0.3203 (3)	0.0490 (9)
H15A	0.3652	0.6735	0.3796	0.059*
C16	0.2630 (2)	0.64613 (17)	0.2814 (3)	0.0451 (9)
H16A	0.2192	0.6714	0.3147	0.054*
O21	0.48392 (16)	0.57804 (13)	0.5311 (2)	0.0567 (7)
H21	0.5353	0.5759	0.5065	0.085*
O22	0.55326 (17)	0.58175 (18)	0.6951 (2)	0.0807 (10)
N21	0.2356 (2)	0.61800 (19)	0.7871 (3)	0.0648 (10)
H21A	0.185 (3)	0.622 (2)	0.817 (4)	0.078*
C21	0.4867 (2)	0.58419 (18)	0.6386 (3)	0.0479 (9)
C22	0.3962 (2)	0.59533 (15)	0.6907 (3)	0.0374 (8)
C23	0.3176 (2)	0.58314 (18)	0.6341 (3)	0.0471 (9)
H23A	0.3195	0.5671	0.5617	0.057*
C24	0.2371 (2)	0.5946 (2)	0.6843 (3)	0.0600 (11)
H24A	0.1837	0.5861	0.6469	0.072*
C25	0.3097 (3)	0.6308 (2)	0.8439 (3)	0.0625 (11)
H25A	0.3058	0.6477	0.9155	0.075*
C26	0.3918 (2)	0.61910 (18)	0.7975 (3)	0.0505 (9)
H26A	0.4442	0.6271	0.8376	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0430 (4)	0.0435 (4)	0.0475 (5)	0.000	0.0058 (3)	0.000
S1	0.0721 (11)	0.0533 (9)	0.0880 (12)	0.000	-0.0363 (9)	0.000
S2	0.0435 (8)	0.0693 (10)	0.0727 (11)	0.000	-0.0010(7)	0.000
S3	0.0743 (8)	0.0469 (6)	0.0786 (8)	0.0132 (5)	-0.0133 (6)	0.0099 (5)
S4	0.0857 (13)	0.1384 (19)	0.0659 (12)	0.000	-0.0134 (10)	0.000
N1	0.052 (3)	0.069 (3)	0.071 (4)	0.000	-0.003 (3)	0.000
N2	0.046 (3)	0.070 (3)	0.084 (4)	0.000	-0.002 (3)	0.000
N3	0.071 (2)	0.045 (2)	0.055 (2)	-0.0017 (17)	0.0016 (17)	0.0027 (16)
N4	0.083 (4)	0.069 (3)	0.049 (3)	0.000	0.010 (3)	0.000
C1	0.065 (4)	0.040 (3)	0.043 (3)	0.000	0.001 (3)	0.000
C2	0.055 (4)	0.042 (3)	0.047 (3)	0.000	0.003 (3)	0.000
C3	0.049 (2)	0.053 (2)	0.041 (2)	-0.0067 (19)	-0.0052 (16)	0.0108 (17)
C4	0.049 (3)	0.060 (4)	0.064 (4)	0.000	0.012 (3)	0.000
O1W	0.078 (3)	0.038 (2)	0.050 (2)	0.000	0.011 (2)	0.000
011	0.0217 (11)	0.0482 (14)	0.0502 (15)	0.0011 (10)	0.0022 (10)	-0.0036 (11)
012	0.0392 (15)	0.085 (2)	0.078 (2)	0.0187 (14)	-0.0255 (14)	-0.0423 (17)
N11	0.0213 (14)	0.059 (2)	0.059 (2)	-0.0046 (14)	-0.0074 (14)	0.0054 (16)

C11	0.0261 (16)	0.046 (2)	0.045 (2)	0.0029 (15)	-0.0061 (15)	-0.0062 (16)
C12	0.0229 (15)	0.0407 (18)	0.0407 (19)	-0.0011 (13)	-0.0005 (13)	-0.0001 (14)
C13	0.0303 (17)	0.051 (2)	0.050 (2)	0.0044 (15)	-0.0023 (16)	-0.0119 (17)
C14	0.0283 (18)	0.056 (2)	0.066 (3)	0.0076 (16)	0.0033 (17)	-0.003 (2)
C15	0.0357 (18)	0.064 (2)	0.048 (2)	0.0000 (18)	-0.0113 (16)	-0.0103 (18)
C16	0.0301 (17)	0.058 (2)	0.047 (2)	0.0069 (16)	-0.0019 (15)	-0.0123 (17)
O21	0.0323 (13)	0.087 (2)	0.0512 (17)	0.0029 (13)	0.0102 (11)	0.0048 (14)
O22	0.0307 (15)	0.149 (3)	0.0622 (19)	0.0025 (16)	-0.0062 (14)	0.0092 (19)
N21	0.0378 (19)	0.093 (3)	0.064 (2)	0.0102 (18)	0.0123 (17)	-0.011 (2)
C21	0.0315 (19)	0.058 (2)	0.054 (2)	-0.0050 (16)	0.0036 (17)	0.0099 (18)
C22	0.0290 (17)	0.0373 (18)	0.046 (2)	-0.0035 (14)	0.0001 (14)	0.0040 (15)
C23	0.0335 (18)	0.064 (2)	0.044 (2)	-0.0017 (17)	0.0034 (16)	-0.0057 (18)
C24	0.031 (2)	0.092 (3)	0.058 (3)	-0.001 (2)	-0.0012 (18)	-0.007 (2)
C25	0.062 (3)	0.074 (3)	0.051 (2)	0.003 (2)	0.010 (2)	-0.018 (2)
C26	0.043 (2)	0.060 (2)	0.049 (2)	-0.0076 (17)	-0.0031 (17)	-0.0084 (18)

Geometric parameters (Å, °)

1.365 (5) 0.9300 0.9300 1.373 (5) 0.9300 0.9300 1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
0.9300 0.9300 1.373 (5) 0.9300 0.9300 1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
0.9300 1.373 (5) 0.9300 0.9300 1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
1.373 (5) 0.9300 0.9300 1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
0.9300 0.9300 1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
0.9300 1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
1.294 (4) 0.8200 1.201 (4) 1.323 (5) 1.325 (5)
0.8200 1.201 (4) 1.323 (5) 1.325 (5)
1.201 (4) 1.323 (5) 1.325 (5)
1.323 (5) 1.325 (5)
1.325 (5)
0.84 (4)
1.502 (5)
1.375 (5)
1.375 (5)
1.361 (5)
0.9300
0.9300
1.364 (5)
0.9300
0.9300
120.0
120.0
119.9 (3)
120.1
120.1
120.1 (3)
120.0

N2—Fe1—N3 ⁱ	91.85 (10)	C15—C16—C12	119.5 (3)
N3—Fe1—N3 ⁱ	172.64 (19)	C15—C16—H16A	120.3
N4—Fe1—O1W	179.6 (2)	C12—C16—H16A	120.3
N1—Fe1—O1W	89.1 (2)	C21—O21—H21	109.5
N2—Fe1—O1W	88.1 (2)	C25—N21—C24	122.6 (3)
N3—Fe1—O1W	86.88 (10)	C25—N21—H21A	120 (3)
N3 ⁱ —Fe1—O1W	86.88 (10)	C24—N21—H21A	117 (3)
C1—N1—Fe1	166.8 (5)	O22—C21—O21	125.6 (3)
C2—N2—Fe1	165.2 (5)	O22—C21—C22	120.7 (3)
C3—N3—Fe1	160.8 (3)	O21—C21—C22	113.6 (3)
C4—N4—Fe1	150.7 (5)	C26—C22—C23	119.1 (3)
N1—C1—S1	176.4 (5)	C26—C22—C21	119.1 (3)
N2—C2—S2	179.5 (6)	C23—C22—C21	121.8 (3)
N3—C3—S3	178.7 (4)	C24—C23—C22	119.7 (3)
N4—C4—S4	179.5 (6)	C24—C23—H23A	120.2
Fe1—O1W—H1WA	118 (4)	С22—С23—Н23А	120.2
C14—N11—C15	122.1 (3)	N21—C24—C23	119.5 (4)
C14—N11—H11A	118 (3)	N21—C24—H24A	120.3
C15—N11—H11A	120 (3)	C23—C24—H24A	120.3
O12-C11-O11	125.6 (3)	N21—C25—C26	120.0 (4)
O12—C11—C12	116.1 (3)	N21—C25—H25A	120.0
O11—C11—C12	118.3 (3)	C26—C25—H25A	120.0
C16—C12—C13	118.4 (3)	C25—C26—C22	119.1 (3)
C16—C12—C11	122.3 (3)	С25—С26—Н26А	120.4
C13—C12—C11	119.3 (3)	С22—С26—Н26А	120.4
C14—C13—C12	120.0 (3)		

Symmetry codes: (i) x, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O1W—H1WA…O11	0.76 (4)	1.95 (4)	2.711 (3)	178 (5)	
N11—H11A···O11 ⁱⁱ	0.86 (4)	1.86 (4)	2.710 (3)	168 (4)	
O21—H21···O12 ⁱⁱ	0.82	1.72	2.532 (3)	173	
N21—H21A···O22 ⁱⁱⁱ	0.84 (4)	2.14 (5)	2.825 (4)	138 (4)	
Symmetry codes: (ii) $x+1/2$, y , $-z+1/2$; (iii) $x-1/2$, y , $-z+3/2$.					

Fig. 2

